

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 79-85 Wang Hong, Wang Zicheng, Wang Yanfeng, Cui Guangzhao

80

3D DNA self-assembly for maximum weighted independent set
problem

Hong Wang1*, Zicheng Wang2, Yanfeng Wang2, Guangzhao Cui2
1School of Architectural and Environmental Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China

2School of Electric and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China

Received 1 October 2014, www.cmnt.lv

Abstract

The problem of finding a maximum weighted independent set (MWIS) is a classical combinatorial optimization problem of graph

theory, which has been proved to be NP-complete (NPC). A 2-D DNA tile self-assembly model for solving the problem has been

proposed previously, but it still has many deficiencies. In this paper, we will propose a 3-D DNA tile self-assembly model based on 2-

D DNA tile self-assembly model to solve the problem. This model includes two parts: the non-deterministic search system and the

addition system. Firstly, we can find all the independent sets via the non-deterministic search system, and then get the total weight

value of each independent set according to the addition system, and by comparison, the maximum weighted independent set will be
found finally. Result shows that the operational time is linear, and the number of the tiles required in the process is constant.

Keywords: maximum weighted independent set problem, DNA computing, 3D self-assembly, DNA tile

1 Introduction

In 1994, Adleman [1] successfully solved a seven-vertex

example of Hamiltonian path problem (HPP) by using the

DNA molecules, which represented the birth of a new field

– DNA computing. DNA computing is a new method that

simulates biomolecular structure and completes the

computing process with the help of molecular biology

techniques, owing to its giant parallelism, high storage

density, extremely low energy consumption etc that the

traditional silicon computer can not match with, it has

become the important research topic in the fields of

computer, biology and nanotechnology.

From then on, many different DNA computing models

emerged, for example, Lipton proposed a DNA computing

model for solving the satisfiability (SAT) problem in 1995

[2]. Ouyang proposed a DNA computing model for solving

the maximum clique problem (MCP) of graph in 1997 [3].

In 2000, Liu et al proposed a DNA computing method for

the SAT problem based on the surface experiments [4]. In

2001, Wu improved the surface computing, making the

operation of surface-based computing more feasible [5].

Gao et al gave a computing model for the maximum

matching problem of graph based on the plasmid DNA

molecules in 2002 [6] and so on.

DNA self-assembly, one important computing method

of DNA computing, executes the computing process

automatically according to the mutual matching of DNA

molecules, and does not require manual intervention in

each step. It developed in the mid-1990s through the large

amounts of theoretical and experimental work by Winfree

[7,8], Seeman[9], Reif [10], Rozenberg [11] et al. Due to

*Corresponding author’s e-mail: haorenlianghao@126.com

the its following uniqueness, the constancy and

specification in the interaction among DNA molecules, the

reversibility of the assembly process and the predictability

of the final structure of product etc, it gradually becomes a

mainstream method for solving the NP and NPC problems.

For example, DNA self-assembly for the minimum vertex

cover problem [12], DNA 3-D self-assembly algorithmic

model to solve the maximum clique problem [13], 3-D

DNA self-assembly model for graph vertex coloring [14],

DNA tile assembly model for 0-1 knapsack problem [15]

and so on.

As the core issue of NPC class problems, MWIS

problem has emerged for a long time. It has extensive use

in the control of industrial process, network design, self-

organizing network, design of large scale integrated circuit,

analysis of economic model and many other aspects.

Before the algorithm proposed in this paper, there have

been some algorithms to be used for solving the maximum

independent set problem, such as a genetic algorithm-

based heuristic for solving the weighted maximum

independent set and some other equivalent problems [16],

a new hybrid genetic algorithm for maximum independent

set problem [17], DNA algorithm based on plasmid for

solving maximum independent set problem [18] and so on.

A 2-D DNA tile self-assembly model for solving the

problem has been proposed previously, but it still has many

deficiencies, for example, the large number of the tiles

required in the self-assembly process etc. In this paper, we

will propose a 3-D DNA tile self-assembly model for the

MWIS problem based on 2-D DNA tile self-assembly

model. The rest of this paper is arranged as follows: section

2 describes the basic knowledge of 3-D DNA tile self-

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 79-85 Wang Hong, Wang Zicheng, Wang Yanfeng, Cui Guangzhao

81

assembly model, section 3 gives the definition of MWIS

problem, section 4 illustrates the 3-D DNA self-assembly

for the MWIS problem, and finally the conclusion is

organized in section 5.

2 3-D tile assembly model

The same as 2-D tile assembly model, the 3-D tile

assembly model is also a formal model of crystal growth

and to be designed to imitate molecules self-assembly such

as DNA. However, in order to assemble in 3-D space, the

tile’s construction of 3D assembly model should be

different from that of the 2-D’s. The 2D tile assembly

model had been fully defined by Rothemund and

Winfree[19], similarly, the 3-D tile assembly model had

been studied by many researchers[20,21,22,23]. Finally

Lin Minqi [14] gave a formal definition of 3-D tile

assembly model based on the 2-D tile assembly model,

3D’s molecular model and 3D’s abstract model are all

shown in Figure 1.

From Figure 1, we can intuitively see that the tile in the

3-D tile assembly model is hexahedral, and its six surfaces

are corresponding to the direction in the 3-D space

coordinate system respectively, that is, the positive and

negative direction of X, Y, Z axes. Each surface of a tile

has a binding domain, and the surfaces with binding

domains may bind with each other or not according to their

binding domains, only when the binding domains on the

adjoining sides of those tiles match and the total strength

of all the binding domains exceeds the current temperature,

they can connect with each other. The strength among all

the matching surfaces and the current temperature are

defined to be “1” and “3” respectively, that is to say, only

when the matching surfaces of the tiles are “3” at least, the

tiles can be assembled in the appropriate position. The type

of a tile is decided by its binding domain on the six

surfaces.

In this definition, the tiles are not allowed to rotate. The

details about the definition of 3-D tile assembly model are

in the reference [14], here we will not state again.

a) b)

FIGURE 1 3D’s molecular model and 3D’s abstract model: a) 3-D

molecular model, b) 3-D tile abstract model

3 MWIS problem

Given an undirected weighted graph G = (V, E), V(G) is a

vertex set, E(G) is the edge set, U is a subset of the vertex

set V(G). If any vertex in U is not adjacent to others of U,

call U the independent set of graph G, if the vertex number

of one independent set is the most, it is called the

maximum independent set, if the vertex weight sum of one

independent set is the largest. We call it the maximum

weighted independent set of graph G. In Figure 2, the

vertex set {v1, v3, v4, v6} is an independent set of the

graph, as well as the maximum independent set, but not the

maximum weighted independent set. Vertex set {v2, v4} is

also an independent set, and it is not the maximum

independent set but the maximum weighted independent

set. Maximum weighted independent set problem is

proved to be a NP-complete problem.

v1

v2

v3

v6

v5

v4

 10

 30

 10

 20

 10

 5

e1

e2
e3

e4

e5

e6

FIGURE 2 6 vertices weighted graph (weight value is in brackets)

In order to solve the problem better, here we present a

formal description for the problem of finding all the

independent sets first: for an undirected weighted graph G,

V(G) and E(G) are the vertical sets and edge sets of graph

G respectively, finding a function f: V(G)→M, which is

the mapping from vertices to set M={0,1}, and meets the

following condition:)(GEemn  , inm , , the values

of f(m) and f(n) are not to be “1” at the same time.

After all the independent sets are found, we begin to

look for the MWIS, the details will be illustrated in the

following chapters.

4 DNA self-assembly for the MWIS problem

In this paper, we found all the independent sets that satisfy

the definition via the non-deterministic algorithm, then

used the addition system [24] designed by Brun to get the

vertex weight sum of each independent set, finally by

comparison, get the optimal value.

4.1 NON-DETERMINISTIC ALGORITHM

A non-deterministic algorithm means that there are some

non-deterministic choices at some steps of the algorithm

(as if some oracle could tell you what to choose). To solve

the MWIS problem, we introduce the non-deterministic

algorithm which was described as follows:

Non-Deterministic Algorithm (G, f):

1) For each)(GVvi  {

2) Assign vi : f (i) {0,1}

3) Check all)(GEeuv  if exist (vu ) and f(u) = f(v) = 1

4) Break and return failure

5) }

6) If all)(GVv i  are assigned

7) Return success and output vi

8) Else return failure

We take Figure 2 as an example to illustrate the

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 79-85 Wang Hong, Wang Zicheng, Wang Yanfeng, Cui Guangzhao

82

nondeterministic search system for an independent set.

From the Figure 2, we can get the following conclusion:

edge e1 is connected by vertex v1 and v2, edge e2 is

connected by vertex v2 and v3. Edge e3 is connected by

vertex v2 and v5. Edge e4 is connected by vertex v2 and

v6. Edge e5 is connected by vertex v4 and v5. Edge e6 is

connected by vertex v5 and v6.

According to the relationship between the vertices and

edges of Figure 2, the adjacency matrix A is produced:

1 1 0 0 0 0

0 1 1 0 0 0

0 1 0 0 1 0

0 1 0 0 0 1

0 0 0 1 1 0

0 0 0 0 1 1

A

 
 
 
 

  
 
 
 
  

.

In order to see the relationship between vertices and

edges more intuitively, give the corresponding adjacency

Table 1.

In the matrix and adjacency Table 1, 0 represents the

assumption that the vertex is not on the edge, and 1

represents the assumption that the vertex is on the edge.

TABLE 1 Adjacency table

 v1 v2 v3 v4 v5 v6

e1 1 1 0 0 0 0

e2 0 1 1 0 0 0

e3 0 1 0 0 1 0

e4 0 1 0 0 0 1

e5 0 0 0 1 1 0

e6 0 0 0 0 1 1

4.2 DESIGN OF 3D DNA TILES

Adjacency tiles: (σZ = 0,1; σX = σ–X = σY = σ–Y = σ–Z

= null); include two tile types (shown in Figure 3). σZ = 0

represents the assumption that the vertex is not on the

corresponding edge; σZ = 1 represents the assumption that

the vertex is on the corresponding edge. The adjacent tiles

can constitute different seed configurations according to

different graphs. The number of the adjacency tiles is 2 for

a graph with n vertices and m edges.

Passing Tiles: (σX =σ–X = 0,1; σY =σ–Y = 0,1; σZ =

null; σ–Z = 0); include four tile types (show in Figure 4).

The bottoms of them are all symbolized with “0”; the

values on the surfaces σY and σ–Y represent the

information of the vertices with the passing function; the

values on the surfaces σX and σ–X represent the

information of the corresponding edges, which also have

the passing function. The number of the passing tiles is 4

for a graph with n vertices and m edges.

FIGURE 3 Adjacency tiles

FIGURE 4 Passing tiles

Checking Tiles: (σX =σ–X = σY = σ–Y = 0; σZ = null;

σ–Z = 1), (σX =σ–X = 1; σY = σ–Y = 0; σZ = null; σ–Z =

1), (σX = 1; σ–X = 0; σY = σ–Y = 1; σZ = null; σ–Z = 1);

include three tile types (shown in Figure 5). The bottoms

of them are all symbolized with “1”; the values on the

surfaces σY and σ–Y represent the information of the

vertices, which have the passing function; the values on the

surfaces σX and σ–X represent the information of the

corresponding edges.

(σX = σ–X = σY = σ–Y = 0; σZ = null; σ–Z = 1) denotes

the vertex is not on the corresponding edge. (σX = 1; σ–X

= 0; σY = σ–Y = 1; σZ = null; σ–Z = 1) denotes the vertex

is on the corresponding edge. (σX =σ–X = 1; σY = σ–Y =

0; σZ = null; σ–Z = 1) denotes the vertex is not on the

corresponding edge, while the vertex before it is on the

corresponding edge. The number of the checking tiles is 3

for a graph with n vertices and m edges.

Input Tiles: (σX =σ–X =&; σY = 0, 1; σ–Y = σ–Z = #;

σZ = null); include two tile types (shown in Figure 6). The

surfaces σX and σ–X are all symbolized with “&”; the

value of surface σY is “0” or “1”, which represents the

value of the vertices; the surfaces σ–Y and σ–Z are all

symbolized with “#”. The number of the input tiles is 2 for

a graph with n vertices and m edges.

Output Tiles: (σX =σ–X = * ; σY = σ–Y = 0, 1; σZ =

null; σ–Z = out); include two tile types(show in figure 7),

which can lead to the final result. The bottoms of them are

all symbolized with “out”; the surfaces σX and σ–X are all

symbolized with “*”; the value of surface σY and σ–Y are

“0” or “1” which represents the value of the vertices. As a

result, the output tiles also have the function of passing.

The number of the output tiles is 2 for a graph with n

vertices and m edges

Boundary Tiles: (σ–X = &; σY = σ–Y = #;σ–Z = E; σX

=σZ = null), (σ–X = 0, 1; σY = σ–Y = #; σ–Z = E; σX =σZ

= null), (σ–X = * ; σ–Y = #; σZ = SS; σ–Z = E; σX =σY =

null); include four tile types(show in Figure 8). The

bottoms of them are all symbolized with “E”; if we count

from the left, the first tile is labeled with “&” on its surface

σ–X, “#” on surface σY and σ–Y; the second tile is labeled

with “0” on its surface σ–X, “#” on surface σY and σ–Y;

the third tile is labeled with “1” on its surface σ–X, the

symbol of its other surface is same as the second tile; the

fourth tile is labeled with “*” on itsσ–X, “#” on surface σ–

Y, “E” on surface σ–Z, “SS” on surface σZ, which

represents the completion of the self–assembly process.

The number of the boundary tiles is 4 for a graph with n

vertices and m edges.

FIGURE 5 Checking tiles

FIGURE 6 Input tiles

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 79-85 Wang Hong, Wang Zicheng, Wang Yanfeng, Cui Guangzhao

83

FIGURE 7 Output tiles

4.3 SEED CONFIGURATION

The seed configuration is shown in Figure 9. It is

constituted by the adjacency tiles and some other tiles, in

which the orange surfaces labeled with symbol “#” are the

input positions. The pink surfaces labeled with symbol

“out” are the output positions.

FIGURE 8 Boundary tiles

FIGURE 9 The seed configuration

The vertices and the edges of the graph G are encoded

on the first row and the first column (count from left to

right, top to bottom) respectively, here we encode the

vertices and the edges one by one according to the order.

In addition to the adjacency tiles of the seed configuration,

the number of the remaining tiles required in the seed

configuration is n + m + 7 for a graph with n vertices and

m edges.

4.4 THE SELF-ASSEMBLY EXAMPLE

4.4.1 A successful self-assembly example

The growth of self-assembly follows the process described

in the non-deterministic algorithm. Figure 10 shows the

process of a successful self-assembly example, from step

1 to step 6, six input tiles (show in Figure 6) will be

assembled on the input positions in turn, and the input tiles

are non-deterministic. Here we take the vertex set {v1, v3,

v4, v6} as the successful self-assembly example, and it can

be written to be the equivalent form “101101”. Owing to

the length of the paper, here we will not present all the self-

assembly steps, but just list the first three steps and the last

step to illustrate the problem.

Step 1: in this step, just one tile will be assembled. Here

we choose the input tile (σX =σ–X =&; σY = 1; σ–Y = σ–

Z = #; σZ = null) as the first random input tile, which is

assembled onto the first input position (count from left to

right), and it represents that the vertex v1 is in the

independent set that we will input.

Step 2: in this step, two tiles will be assembled. One of

them is the second random input tile. Here we choose the

input tile (σX =σ–X =&; σY = 0; σ–Y = σ–Z = #; σZ = null)

as the second random input tile, which is assembled onto

the second input position (count from left to right), and it

represents that the vertex v2 is not in the vertex set that we

will input. Another tile is the checking tile, which will be

chosen according to complementary relationship among

tiles, and the checking tile here is (σX = 1; σ–X = 0; σY =

σ–Y = 1; σZ = null; σ–Z = 1).

a) b)

c) d)

FIGURE 10 A successful self-assembly example: a) The first step of

the self-assembly process, b) The second step of the self-assembly
process, c) The third step of the self-assembly process, d) The last

step of the self-assembly process

Step 3: in this step, three tiles will be assembled. One of

them is the third random input tile, here we choose the

input tile (σX =σ–X =&; σY = 1; σ–Y = σ–Z = #. σZ = null)

as the third random input tile, which is assembled onto the

third input position (count from left to right), and it

represents that the vertex v3 is in the vertex set that we will

input. The remaining tiles are checking tile and passing tile

respectively, which are also to be chosen according to

complementary relationship among tiles, the checking tile

here is (σX =σ–X = 1; σY = σ–Y = 0; σZ = null; σ–Z = 1),

the passing tile here is (σX =σ–X = 0; σY =σ–Y = 1; σZ =

null; σ–Z = 0).

Step 4: this step is the last step of the self–assembly

process; in this figure, we can get the following conclusion:

the successful assembly of the tile with symbol “SS” on

The surface σZ represents the successful completion of the

whole assembly process. And here we can get the output

result “101101”, which denotes the vertex set {v1, v3, v4,

v6} is one independent set of graph G.

4.4.2 An unsuccessful self-assembly example

The vertex sets we input randomly are not always to be an

independent set of graph G, that is to say, the processes are

not always successful. An unsuccessful self-assembly

example is shown in the Figure 11.

In this example, we choose {v1, v3, v4, v5} as the

random vertex set, its equivalent form is “101110”. From

Figure 11, we can see a transparent tile labeled with red

cross on its σZ surface, which represents that no tile can be

attached to the position, that is to say, from all the checking

tiles we design, we can not find a tile to satisfy the

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 79-85 Wang Hong, Wang Zicheng, Wang Yanfeng, Cui Guangzhao

84

following conditions: (σX =σ–X = σY =σ–Y = 1. σZ = null;

σ–Z = 1). So when the process carries out to this location,

the assembly terminates, and we can say that the vertex set

{v1, v3, v4, v5} is not an independent set of graph G.

FIGURE 11 An unsuccessful self-assembly example

4.5 ADDITION SYSTEM

In this study, we refer to the addition system that Brun

designs in reference [25] to solve f(a, b) = a + b (a, b are

positive). The tiles that the system requires are shown in

Figure 12, four sides of each tile represent different sticky

ends, the south and east sides are input values, the west

side is the carry value, the north side is the output value.

0

1

0

1

0

1 1

0 0

1

0

1

*1

1

0

0

0

*0

0

*
0

#
0

*
0

*1

#
0

1

*0

*
1

#
1

0

*1

*
1

#
1

1

*0

0

0

*
0

*
0

*1

*
1

*
1

1

1

*0

0 0

0

0

0

0

1

1

1

1

0 0

1

11

0

0

0

1

1

#
0

#
0

#
0

#
0

0

0

1

1

#
1

#
1

#
1

#
1

FIGURE 12 Addition operation tiles

00101010

0

0

1

0

0

1

0 0 0 0 01 1 1

#
1

#
0

#
0

#
0

#
1

*
0

FIGURE 13 Seed configuration of addition system

00101010

0

0

1

0

0

1

0

0

*
00

0

01

1

00

0

01

1

00 0

0

1

1

000 0

0

*0

#
00

0

*
01

1

00 0

0

1

1

00 0

0

1

1

000 0

0

0

0

#
1

0

0

#
0

0

0

#
0

0

0

0

#
1

*0

#
10

*
1

1

1

0

1

1

1

00 0

0

1

1

000 0

0

0

0

#
0

0

0

#
0

0

0

0

#
1

*0

#
0

0

0

#
0

0

0

0

#
1

1

1

*
0

*1

#
0

1

1

1

#
1

1

1

00 0

0

1

1

000 0

0

1

1

*
0

*1

#
1

1

0 0

0

1

1

000 0

0

1

0

*1

*
11

1

1

000 0

0

0

FIGURE 14 An example of addition operation

Now we illustrate the system according to an example

in Figures 13 and 14, we take a = 10101002 = 84, b =

1001002 = 36, by computing, we obtain f(a, b) = 1111002

= 120.

4.6 COMPLEXITY ANALYSIS

Like 2-D DNA self-assembly model, the complexity of 3-

D DNA self-assembly model also mainly includes three

aspects: computation time T, computation space S, and the

total tile’s number N required in the assembly process.

Since the complexity of the addition system has been

discussed in reference [24], here we will just discuss the

complexity of the independent set search system for a

graph with n vertices and m edges.

From the Figure 10, we can obviously see that the

computation time T is equal to the width (depth) of the

assembly, in fact:

T ≤ n+ m + 2 = Θ(n). (1)

The computation space S is the volume of the assembly

map:

S ≤ (m + 3) × (n + 2) =Θ(mn). (2)

The total number of the tiles required during the

assembly is:

N =2 + 4 + 3 + 2 + 2 + 4 + n + m + 7= n + m + 24. (3)

5 Conclusions

In this paper, we design a 3-D DNA self-assembly model

to solve the MWIS problem of graph based on 2D DNA

self-assembly model, and confirm that the assembly

process is feasible in theory. Compared with the 2-D DNA

self-assembly model, the computing ability of 3-D DNA

self-assembly model is more powerful. For example, the

3D DNA self-assembly model ensures the number of the

tiles required in the process is constant, which is far

smaller than the 2D DNA self-assembly model, the 3-D

DNA tiles can express more information etc. However, we

may encounter some technical obstacles in the actual

operation, such as restrictions on the concentration of DNA

chains, AFM, the restrictions of electrophoresis and so on.

So in the future we will work harder to overcome the

difficulty.

Acknowledgements

The work for this paper was supported by the National

Science Foundation of China (Grant No.60773122,

60970084, 61070238), Basic and Frontier Technology

Research Program of Henan Province (Grant No.

082300413203, 092300410166) and Innovation Scientists

and Technicians Troop Construction Projects of Henan

Province (Grant No. 094100510022).

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 79-85 Wang Hong, Wang Zicheng, Wang Yanfeng, Cui Guangzhao

85

References

[1] Adleman L M 1994 Molecular Computation of Solutions to

Combinatorial Problems Science 266(11) 1021-4

[2] Lipton R J 1995 DNA Solution of Hard Computation Problems

Science 268(4) 542-5
[3] Ouyang Q, Kaplan P D, Liu S, Libchaber A 1997 DNA Solution of

the Maximal Clique Problem Science 278(17) 446-9

[4] Liu Q, Wang L, Frutos A, Condon A E, Corn R M, Smith L M 2000
DNA Computing on Surfaces Nature 403 175-9

[5] Wu H Y 2001 An Improved Surface Based Method for DNA

Computation Biosystems 59(1) 1-5
[6] Gao L, Xu J 2002 DNA Solution of Vertex Cover Problem Based on

Sticker Model Chinese Journal of Electronics 11(2) 280-4 (in

Chinese)
[7] Winfree E, Eng T, Rozenberg G 2001 String tile models for DNA

computing by self-assembly Proceeding of the DNA'00 Revised

Papers from the 6th International Workshop on DNA-Based
Computers: DNA Computing 2054 63-88

[8] Winfree E 1998 Algorithmic self-assembly of DNA PhD thesis

California Institute of Technology Pasadena CA

[9] Seeman N C 1998 DNA nanotechnology: novel DNA constructions

Annual Review of Biophysics and Biomolecular Structure 27 225–48.

[10] Reif J F 2002 Computing: successes and challenges Science 296 478-
9

[11] Rozenberg G, Spaink H 2003 DNA computing by blocking

Theoretical Computer Science 292 653-65
[12] Wang Y F, Hu P P, Zhang X C, Cui G Z 2011 DNA Self-Assembly

for the Minimum Vertex Cover Problem Advanced Science Letters

4(1) 74-9
[13] Ma J J, Li J, Dong Y F 2011 DNA 3D Self-assembly Algorithmic

Model to Solve Maximum Clique Problem Image, Graphics and

Signal Processing 3 41-8
[14] Lin M Q, Xu J, Zhang D F, Chen Z, Zhang X, Cheng Z, Huang Y, Li

Y 2009 3D DNA Self-Assembly Model for Graph Vertex Coloring

Computational and Theoretical Nanoscience 7(1) 246-53
[15] Wang Y F, Lu W L, Zhang X C, Cui G Z 2010 DNA Tile Assembly

Model for 0-1 Knapsack Problem Proceedings 2010 Fifth

International Conference on Bio-Inspired Computing: Theories and
Applications 180-4

[16] Hifi M 1997 A genetic algorithm-based heuristic for solving the

weighted maximum independent set and some equivalent problems
Journal of the Operation Research Society 48(6) 612-22

[17] Mehrabi S, Mehrabi A, Mehrabi A D 2009 A new hybrid genetic

algorithm for maximum independent set problem Conference:
ICSOFT 2009 – Proceedings of the 4th International Conference on

Software and Data Technologies 2

[18] Head T, Rosenberg G, Blagergroen R S, Breek C K, Lommerse P H,
Spaink H P 2000 Computing with DNA by operating on plasmids

Biosystems 57(2) 87-93

[19] Rothemund P, Winfree E 2000 The program-size complexity of self-
assembled squares(extended abstract) Proceedings of the thirty-

second annual ACM symposium on Theory of computing 459-68

[20] Brun Y 2008 Self-Assembly for Discreet, Fault-Tolerant, and

Scalable Computing on Internet-Sized Distributed Networks

[dissertation] California University of Southern California 7-111

[21] Reif J H 1999 Local parallel biomolecular computation DNA Based
Computers III: DIMACS Workshop Providence 217-54

[22] Pelletier O, Weimerskirch A 2002 Algorithmic Self-Assembly of

DNA Tiles and its Application to Cryptanalysis Proceedings of the
GECC0-2002 139-46

[23] Vieira F R J, Barbosa V C 2011 Optimization of supply diversity for

the self-assembly of simple objects in two and three dimensions
Natural Computing 10(1) 551-81

[24] Brun Y 2007 Arithmetic computation in the tile assembly model:

Addition and multiplication Theoretical Computer Science 378 17-
31

Authors

Hong Wang, August 1977, Henan, Pingdingshan, China.

Current position, grades: lecturer.
Scientific interests: computer control, non-linear theory and the biological information processing.
Publications: 10 papers, 2 patents.

Zicheng Wang, August 1976, Henan, Pingdingshan, China.

Current position, grades: associate professor.
Scientific interests: biological information processing.
Publications: 15 papers, 2patents.

Yanfeng Wang, March 1973, Henan, Nanzhao, China.

Current position, grades: professor.
Scientific interests: biological information processing.
Publications: 20 papers, 3 patents.

Guangzhao Cui, Septmeber 1957, Henan, Luoning, China.

Current position, grades: professor.
Scientific interests: biological information processing.
Publications: 30 papers, 5 patents.

