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Abstract 

The problem of finding a maximum weighted independent set (MWIS) is a classical combinatorial optimization problem of graph 

theory, which has been proved to be NP-complete (NPC). A 2-D DNA tile self-assembly model for solving the problem has been 

proposed previously, but it still has many deficiencies. In this paper, we will propose a 3-D DNA tile self-assembly model based on 2-

D DNA tile self-assembly model to solve the problem. This model includes two parts: the non-deterministic search system and the 

addition system. Firstly, we can find all the independent sets via the non-deterministic search system, and then get the total weight 

value of each independent set according to the addition system, and by comparison, the maximum weighted independent set will be 
found finally. Result shows that the operational time is linear, and the number of the tiles required in the process is constant. 

Keywords: maximum weighted independent set problem, DNA computing, 3D self-assembly, DNA tile 

 

1 Introduction 

 

In 1994, Adleman [1] successfully solved a seven-vertex 

example of Hamiltonian path problem (HPP) by using the 

DNA molecules, which represented the birth of a new field 

– DNA computing. DNA computing is a new method that 

simulates biomolecular structure and completes the 

computing process with the help of molecular biology 

techniques, owing to its giant parallelism, high storage 

density, extremely low energy consumption etc that the 

traditional silicon computer can not match with, it has 

become the important research topic in the fields of 

computer, biology and nanotechnology. 

From then on, many different DNA computing models 

emerged, for example, Lipton proposed a DNA computing 

model for solving the satisfiability (SAT) problem in 1995 

[2]. Ouyang proposed a DNA computing model for solving 

the maximum clique problem (MCP) of graph in 1997 [3]. 

In 2000, Liu et al proposed a DNA computing method for 

the SAT problem based on the surface experiments [4]. In 

2001, Wu improved the surface computing, making the 

operation of surface-based computing more feasible [5]. 

Gao et al gave a computing model for the maximum 

matching problem of graph based on the plasmid DNA 

molecules in 2002 [6] and so on. 

DNA self-assembly, one important computing method 

of DNA computing, executes the computing process 

automatically according to the mutual matching of DNA 

molecules, and does not require manual intervention in 

each step. It developed in the mid-1990s through the large 

amounts of theoretical and experimental work by Winfree 

[7,8], Seeman[9], Reif [10], Rozenberg [11] et al. Due to 
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the its following uniqueness, the constancy and 

specification in the interaction among DNA molecules, the 

reversibility of the assembly process and the predictability 

of the final structure of product etc, it gradually becomes a 

mainstream method for solving the NP and NPC problems. 

For example, DNA self-assembly for the minimum vertex 

cover problem [12], DNA 3-D self-assembly algorithmic 

model to solve the maximum clique problem [13], 3-D 

DNA self-assembly model for graph vertex coloring [14], 

DNA tile assembly model for 0-1 knapsack problem [15] 

and so on. 

As the core issue of NPC class problems, MWIS 

problem has emerged for a long time. It has extensive use 

in the control of industrial process, network design, self-

organizing network, design of large scale integrated circuit, 

analysis of economic model and many other aspects. 

Before the algorithm proposed in this paper, there have 

been some algorithms to be used for solving the maximum 

independent set problem, such as a genetic algorithm-

based heuristic for solving the weighted maximum 

independent set and some other equivalent problems [16], 

a new hybrid genetic algorithm for maximum independent 

set problem [17], DNA algorithm based on plasmid for 

solving maximum independent set problem [18] and so on. 

A 2-D DNA tile self-assembly model for solving the 

problem has been proposed previously, but it still has many 

deficiencies, for example, the large number of the tiles 

required in the self-assembly process etc. In this paper, we 

will propose a 3-D DNA tile self-assembly model for the 

MWIS problem based on 2-D DNA tile self-assembly 

model. The rest of this paper is arranged as follows: section 

2 describes the basic knowledge of 3-D DNA tile self-
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assembly model, section 3 gives the definition of MWIS 

problem, section 4 illustrates the 3-D DNA self-assembly 

for the MWIS problem, and finally the conclusion is 

organized in section 5. 

 

2 3-D tile assembly model 

 

The same as 2-D tile assembly model, the 3-D tile 

assembly model is also a formal model of crystal growth 

and to be designed to imitate molecules self-assembly such 

as DNA. However, in order to assemble in 3-D space, the 

tile’s construction of 3D assembly model should be 

different from that of the 2-D’s. The 2D tile assembly 

model had been fully defined by Rothemund and 

Winfree[19], similarly, the 3-D tile assembly model had 

been studied by many researchers[20,21,22,23]. Finally 

Lin Minqi [14] gave a formal definition of 3-D tile 

assembly model based on the 2-D tile assembly model, 

3D’s molecular model and 3D’s abstract model are all 

shown in Figure 1. 

From Figure 1, we can intuitively see that the tile in the 

3-D tile assembly model is hexahedral, and its six surfaces 

are corresponding to the direction in the 3-D space 

coordinate system respectively, that is, the positive and 

negative direction of X, Y, Z axes. Each surface of a tile 

has a binding domain, and the surfaces with binding 

domains may bind with each other or not according to their 

binding domains, only when the binding domains on the 

adjoining sides of those tiles match and the total strength 

of all the binding domains exceeds the current temperature, 

they can connect with each other. The strength among all 

the matching surfaces and the current temperature are 

defined to be “1” and “3” respectively, that is to say, only 

when the matching surfaces of the tiles are “3” at least, the 

tiles can be assembled in the appropriate position. The type 

of a tile is decided by its binding domain on the six 

surfaces.  

In this definition, the tiles are not allowed to rotate. The 

details about the definition of 3-D tile assembly model are 

in the reference [14], here we will not state again. 

  

a) b) 

FIGURE 1 3D’s molecular model and 3D’s abstract model: a) 3-D 

molecular model, b) 3-D tile abstract model 

 

3 MWIS problem 

 

Given an undirected weighted graph G = (V, E), V(G) is a 

vertex set, E(G) is the edge set, U is a subset of the vertex 

set V(G). If any vertex in U is not adjacent to others of U, 

call U the independent set of graph G, if the vertex number 

of one independent set is the most, it is called the 

maximum independent set, if the vertex weight sum of one 

independent set is the largest. We call it the maximum 

weighted independent set of graph G. In Figure 2, the 

vertex set {v1, v3, v4, v6} is an independent set of the 

graph, as well as the maximum independent set, but not the 

maximum weighted independent set. Vertex set {v2, v4} is 

also an independent set, and it is not the maximum 

independent set but the maximum weighted independent 

set. Maximum weighted independent set problem is 

proved to be a NP-complete problem. 
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FIGURE 2 6 vertices weighted graph (weight value is in brackets) 

In order to solve the problem better, here we present a 

formal description for the problem of finding all the 

independent sets first: for an undirected weighted graph G, 

V(G) and E(G) are the vertical sets and edge sets of graph 

G respectively, finding a function f: V(G)→M, which is 

the mapping from vertices to set M={0,1}, and meets the 

following condition: )(GEemn  , inm , , the values 

of f(m) and f(n) are not to be “1” at the same time. 

After all the independent sets are found, we begin to 

look for the MWIS, the details will be illustrated in the 

following chapters. 

 

4 DNA self-assembly for the MWIS problem 

 

In this paper, we found all the independent sets that satisfy 

the definition via the non-deterministic algorithm, then 

used the addition system [24] designed by Brun to get the 

vertex weight sum of each independent set, finally by 

comparison, get the optimal value. 

 

4.1 NON-DETERMINISTIC ALGORITHM 

 

A non-deterministic algorithm means that there are some 

non-deterministic choices at some steps of the algorithm 

(as if some oracle could tell you what to choose). To solve 

the MWIS problem, we introduce the non-deterministic 

algorithm which was described as follows: 

Non-Deterministic Algorithm (G, f ): 

1) For each )(GVvi  { 

2) Assign vi : f (i) {0,1} 

3) Check all )(GEeuv  if exist ( vu  ) and f(u) = f(v) = 1 

4) Break and return failure  

5) } 

6) If all )(GVv i   are assigned 

7) Return success and output vi 

8) Else return failure 

We take Figure 2 as an example to illustrate the 
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nondeterministic search system for an independent set. 

From the Figure 2, we can get the following conclusion: 

edge e1 is connected by vertex v1 and v2, edge e2 is 

connected by vertex v2 and v3. Edge e3 is connected by 

vertex v2 and v5. Edge e4 is connected by vertex v2 and 

v6. Edge e5 is connected by vertex v4 and v5. Edge e6 is 

connected by vertex v5 and v6.  

According to the relationship between the vertices and 

edges of Figure 2, the adjacency matrix A is produced: 

1 1 0 0 0 0

0 1 1 0 0 0

0 1 0 0 1 0

0 1 0 0 0 1

0 0 0 1 1 0

0 0 0 0 1 1

A

 
 
 
 

  
 
 
 
  

. 

In order to see the relationship between vertices and 

edges more intuitively, give the corresponding adjacency 

Table 1. 

In the matrix and adjacency Table 1, 0 represents the 

assumption that the vertex is not on the edge, and 1 

represents the assumption that the vertex is on the edge. 

TABLE 1 Adjacency table 

 v1 v2 v3 v4 v5 v6 

e1 1 1 0 0 0 0 

e2 0 1 1 0 0 0 

e3 0 1 0 0 1 0 

e4 0 1 0 0 0 1 

e5 0 0 0 1 1 0 

e6 0 0 0 0 1 1 

 

4.2 DESIGN OF 3D DNA TILES 

 

Adjacency tiles: (σZ = 0,1; σX = σ–X = σY = σ–Y = σ–Z 

= null); include two tile types (shown in Figure 3). σZ = 0 

represents the assumption that the vertex is not on the 

corresponding edge; σZ = 1 represents the assumption that 

the vertex is on the corresponding edge. The adjacent tiles 

can constitute different seed configurations according to 

different graphs. The number of the adjacency tiles is 2 for 

a graph with n vertices and m edges. 

Passing Tiles: (σX =σ–X = 0,1; σY =σ–Y = 0,1; σZ = 

null; σ–Z = 0); include four tile types (show in Figure 4). 

The bottoms of them are all symbolized with “0”; the 

values on the surfaces σY and σ–Y represent the 

information of the vertices with the passing function; the 

values on the surfaces σX and σ–X represent the 

information of the corresponding edges, which also have 

the passing function. The number of the passing tiles is 4 

for a graph with n vertices and m edges. 

 
FIGURE 3 Adjacency tiles 

 
FIGURE 4 Passing tiles 

Checking Tiles: (σX =σ–X = σY = σ–Y = 0; σZ = null; 

σ–Z = 1), (σX =σ–X = 1; σY = σ–Y = 0; σZ = null; σ–Z = 

1), (σX = 1; σ–X = 0; σY = σ–Y = 1; σZ = null; σ–Z = 1); 

include three tile types (shown in Figure 5). The bottoms 

of them are all symbolized with “1”; the values on the 

surfaces σY and σ–Y represent the information of the 

vertices, which have the passing function; the values on the 

surfaces σX and σ–X represent the information of the 

corresponding edges. 

(σX = σ–X = σY = σ–Y = 0; σZ = null; σ–Z = 1) denotes 

the vertex is not on the corresponding edge. (σX = 1; σ–X 

= 0; σY = σ–Y = 1; σZ = null; σ–Z = 1) denotes the vertex 

is on the corresponding edge. (σX =σ–X = 1; σY = σ–Y = 

0; σZ = null; σ–Z = 1) denotes the vertex is not on the 

corresponding edge, while the vertex before it is on the 

corresponding edge. The number of the checking tiles is 3 

for a graph with n vertices and m edges. 

Input Tiles: (σX =σ–X =&; σY = 0, 1; σ–Y = σ–Z = #; 

σZ = null); include two tile types (shown in Figure 6). The 

surfaces σX and σ–X are all symbolized with “&”; the 

value of surface σY is “0” or “1”, which represents the 

value of the vertices; the surfaces σ–Y and σ–Z are all 

symbolized with “#”. The number of the input tiles is 2 for 

a graph with n vertices and m edges.  

Output Tiles: (σX =σ–X = * ; σY = σ–Y = 0, 1; σZ = 

null; σ–Z = out); include two tile types(show in figure 7), 

which can lead to the final result. The bottoms of them are 

all symbolized with “out”; the surfaces σX and σ–X are all 

symbolized with “*”; the value of surface σY and σ–Y are 

“0” or “1” which represents the value of the vertices. As a 

result, the output tiles also have the function of passing. 

The number of the output tiles is 2 for a graph with n 

vertices and m edges 

Boundary Tiles: (σ–X = &; σY = σ–Y = #;σ–Z = E; σX 

=σZ = null), (σ–X = 0, 1; σY = σ–Y = #; σ–Z = E; σX =σZ 

= null), (σ–X = * ; σ–Y = #; σZ = SS; σ–Z = E; σX =σY = 

null); include four tile types(show in Figure 8). The 

bottoms of them are all symbolized with “E”; if we count 

from the left, the first tile is labeled with “&” on its surface 

σ–X, “#” on surface σY and σ–Y; the second tile is labeled 

with “0” on its surface σ–X, “#” on surface σY and σ–Y; 

the third tile is labeled with “1” on its surface σ–X, the 

symbol of its other surface is same as the second tile; the 

fourth tile is labeled with “*” on itsσ–X, “#” on surface σ–

Y, “E” on surface σ–Z, “SS” on surface σZ, which 

represents the completion of the self–assembly process. 

The number of the boundary tiles is 4 for a graph with n 

vertices and m edges. 

 
FIGURE 5 Checking tiles 

 
FIGURE 6 Input tiles 
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FIGURE 7 Output tiles 

 

4.3 SEED CONFIGURATION 

 

The seed configuration is shown in Figure 9. It is 

constituted by the adjacency tiles and some other tiles, in 

which the orange surfaces labeled with symbol “#” are the 

input positions. The pink surfaces labeled with symbol 

“out” are the output positions. 

 
FIGURE 8 Boundary tiles 

 
FIGURE 9 The seed configuration 

The vertices and the edges of the graph G are encoded 

on the first row and the first column (count from left to 

right, top to bottom) respectively, here we encode the 

vertices and the edges one by one according to the order. 

In addition to the adjacency tiles of the seed configuration, 

the number of the remaining tiles required in the seed 

configuration is n + m + 7 for a graph with n vertices and 

m edges. 

 

4.4 THE SELF-ASSEMBLY EXAMPLE 

 

4.4.1 A successful self-assembly example  

 

The growth of self-assembly follows the process described 

in the non-deterministic algorithm. Figure 10 shows the 

process of a successful self-assembly example, from step 

1 to step 6, six input tiles (show in Figure 6) will be 

assembled on the input positions in turn, and the input tiles 

are non-deterministic. Here we take the vertex set {v1, v3, 

v4, v6} as the successful self-assembly example, and it can 

be written to be the equivalent form “101101”. Owing to 

the length of the paper, here we will not present all the self-

assembly steps, but just list the first three steps and the last 

step to illustrate the problem. 

Step 1: in this step, just one tile will be assembled. Here 

we choose the input tile (σX =σ–X =&; σY = 1; σ–Y = σ–

Z = #; σZ = null) as the first random input tile, which is 

assembled onto the first input position (count from left to 

right), and it represents that the vertex v1 is in the 

independent set that we will input.  

Step 2: in this step, two tiles will be assembled. One of 

them is the second random input tile. Here we choose the 

input tile (σX =σ–X =&; σY = 0; σ–Y = σ–Z = #; σZ = null) 

as the second random input tile, which is assembled onto 

the second input position (count from left to right), and it 

represents that the vertex v2 is not in the vertex set that we 

will input. Another tile is the checking tile, which will be 

chosen according to complementary relationship among 

tiles, and the checking tile here is (σX = 1; σ–X = 0; σY = 

σ–Y = 1; σZ = null; σ–Z = 1). 

  
a) b) 

  

c) d) 

FIGURE 10 A successful self-assembly example: a) The first step of 

the self-assembly process, b) The second step of the self-assembly 
process, c) The third step of the self-assembly process, d) The last 

step of the self-assembly process 

Step 3: in this step, three tiles will be assembled. One of 

them is the third random input tile, here we choose the 

input tile (σX =σ–X =&; σY = 1; σ–Y = σ–Z = #. σZ = null) 

as the third random input tile, which is assembled onto the 

third input position (count from left to right), and it 

represents that the vertex v3 is in the vertex set that we will 

input. The remaining tiles are checking tile and passing tile 

respectively, which are also to be chosen according to 

complementary relationship among tiles, the checking tile 

here is (σX =σ–X = 1; σY = σ–Y = 0; σZ = null; σ–Z = 1), 

the passing tile here is (σX =σ–X = 0; σY =σ–Y = 1; σZ = 

null; σ–Z = 0). 

Step 4: this step is the last step of the self–assembly 

process; in this figure, we can get the following conclusion: 

the successful assembly of the tile with symbol “SS” on 

The surface σZ represents the successful completion of the 

whole assembly process. And here we can get the output 

result “101101”, which denotes the vertex set {v1, v3, v4, 

v6} is one independent set of graph G. 

 

4.4.2 An unsuccessful self-assembly example 

 

The vertex sets we input randomly are not always to be an 

independent set of graph G, that is to say, the processes are 

not always successful. An unsuccessful self-assembly 

example is shown in the Figure 11. 

In this example, we choose {v1, v3, v4, v5} as the 

random vertex set, its equivalent form is “101110”. From 

Figure 11, we can see a transparent tile labeled with red 

cross on its σZ surface, which represents that no tile can be 

attached to the position, that is to say, from all the checking 

tiles we design, we can not find a tile to satisfy the 
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following conditions: (σX =σ–X = σY =σ–Y = 1. σZ = null; 

σ–Z = 1). So when the process carries out to this location, 

the assembly terminates, and we can say that the vertex set 

{v1, v3, v4, v5} is not an independent set of graph G. 

 
FIGURE 11 An unsuccessful self-assembly example 

 

4.5 ADDITION SYSTEM 

 

In this study, we refer to the addition system that Brun 

designs in reference [25] to solve f(a, b) = a + b (a, b are 

positive). The tiles that the system requires are shown in 

Figure 12, four sides of each tile represent different sticky 

ends, the south and east sides are input values, the west 

side is the carry value, the north side is the output value. 
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FIGURE 12 Addition operation tiles 
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FIGURE 13 Seed configuration of addition system 
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FIGURE 14 An example of addition operation 

Now we illustrate the system according to an example 

in Figures 13 and 14, we take a = 10101002 = 84, b = 

1001002 = 36, by computing, we obtain f(a, b) = 1111002 

= 120. 

 

4.6 COMPLEXITY ANALYSIS 

 

Like 2-D DNA self-assembly model, the complexity of 3-

D DNA self-assembly model also mainly includes three 

aspects: computation time T, computation space S, and the 

total tile’s number N required in the assembly process. 

Since the complexity of the addition system has been 

discussed in reference [24], here we will just discuss the 

complexity of the independent set search system for a 

graph with n vertices and m edges. 

From the Figure 10, we can obviously see that the 

computation time T is equal to the width (depth) of the 

assembly, in fact: 

T ≤ n+ m + 2 = Θ(n). (1) 

The computation space S is the volume of the assembly 

map: 

S ≤ (m + 3) × (n + 2) =Θ(mn). (2) 

The total number of the tiles required during the 

assembly is: 

N =2 + 4 + 3 + 2 + 2 + 4 + n + m + 7= n + m + 24. (3) 

 

5 Conclusions 

 

In this paper, we design a 3-D DNA self-assembly model 

to solve the MWIS problem of graph based on 2D DNA 

self-assembly model, and confirm that the assembly 

process is feasible in theory. Compared with the 2-D DNA 

self-assembly model, the computing ability of 3-D DNA 

self-assembly model is more powerful. For example, the 

3D DNA self-assembly model ensures the number of the 

tiles required in the process is constant, which is far 

smaller than the 2D DNA self-assembly model, the 3-D 

DNA tiles can express more information etc. However, we 

may encounter some technical obstacles in the actual 

operation, such as restrictions on the concentration of DNA 

chains, AFM, the restrictions of electrophoresis and so on. 

So in the future we will work harder to overcome the 

difficulty. 
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